
1
CIS 422/522

CIS 422/522 ©S. Faulk 1

Designing the Module Structure
How do we design to arrive at the desired
qualities?
Address Book exercise

CIS 422/522 ©S. Faulk 2

Architecture Design Process

Building architecture to address business goals:
1.  Understand the goals for the system
2.  Define the quality requirements
3.  Design the architecture

1.  Views: which architectural structures should we use?  
(goals<->architectural structures<->representation)

2.  Documentation: how do we communicate design decisions?
3.  Design: how do we decompose the system?

4.  Evaluate the architecture (is it a good design?)

CIS 422/522 ©S. Faulk 3

Notional Modules

Problem

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Users

Creator

Contract

2
CIS 422/522

CIS 422/522 ©S. Faulk 4

Module Hierarchy
Problem

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

 ? relation

Leaf Modules =
Work

assignments

CIS 422/522 ©S. Faulk 5

Decomposition Strategies Differ

•  How do we develop this structure so that the leaf
modules make independent work assignments?

•  Many ways to decompose hierarchically
–  Functional: each module is a function
–  Pipes and Filters: each module is a step in a chain of

processing
–  Transactional: data transforming components
–  OOD: use case driven development

•  Different approaches result in different kinds of
dependencies

CIS 422/522 ©S. Faulk 6

Use Case Driven OO Process

•  Address book design: in-class exercise
•  Requirements
•  Problem Analysis

–  Identify use cases from requirements
–  Identify domain classes operationalizing use cases (apply

heuristics)
•  OO Design (refinement)

–  Allocate responsibilities among classes
•  CRC Cards (Class-Responsibility-Collaboration)

–  Identify object interactions supporting use cases
•  Sequence or Interaction Diagram for each scenario

–  Identify supporting classes (& associations)
•  Design Class Diagram, relations

•  Detailed Design
–  Design class interfaces (class attributes and services)

3
CIS 422/522

CIS 422/522 ©S. Faulk 7

Decomposition Heuristics

•  Heuristics: suppose we create objects by …
–  Underline the nouns
–  Identify causal agents
–  Identify coherent services
–  Identify real-world items
–  Identify physical devices
–  Identify essential abstractions
–  Identify transactions
–  Identify persistent information
–  Identify visual elements
–  Identify control elements
–  Execute scenarios

CIS 422/522 ©S. Faulk 8

Use Case Driven OO Process

•  Address book design: in-class exercise
•  Requirements
•  Problem Analysis

–  Identify use cases from requirements
–  Identify domain classes operationalizing

use cases (apply heuristics)
•  OO Design (refinement)

–  Allocate responsibilities among classes
–  Identify object interactions supporting use

cases
–  Identify supporting classes (&

associations)
•  Detailed Design

–  Design class interfaces (class attributes
and services)

CIS 422/522 ©S. Faulk 9

Address Book Design Exercise

•  Is this a good design?
–  Walk through the handout to understand how the

design is derived
•  Understand how use-case-driven OO design works

–  Walk through the design’s class diagram and UML
class specifications to understand the structure
and function of the design

–  Discuss the good and bad points of the design to
arrive a team judgment

–  Justify your answer: what is good about it (or bad)
and why? What is the role of the MVC pattern?

4
CIS 422/522

CIS 422/522 ©S. Faulk 10

Lessons

•  Without quality requirements there is no basis
for choosing between designs
–  i.e., we have no measure for “good”

CIS 422/522 ©S. Faulk 11

General OO Objectives

•  Manage complexity
•  Improve maintainability
•  Improve stakeholder communication
•  Improve productivity
•  Improve reuse
•  Provide unified development model

(requirements to code)

CIS 422/522 ©S. Faulk 12

General OO Principles

•  Principles provided to support goals
•  Abstraction and Problem modeling

–  Development in terms of problem domain
–  Supports communication, productivity

•  Generalization/Specialization (type of abstraction)
–  Inheritance of shared attributes & Delayed Binding (polymorphism)
–  Support for reuse, productivity

•  Modularization and Information Hiding
–  Supports maintainability, reuse

•  Independence (abstract interfaces + IH)
–  Classes designed as independent entities
–  Supports readability, reuse, maintainability

•  Common underlying model
–  OO model for analysis, design, and programming
–  Supports unified development

5
CIS 422/522

CIS 422/522 ©S. Faulk 13

Some Design Goals

•  Be easy to make the following kinds of change
–  Add additional fields to the entries: for example, fields

for someone's email, mobile phone, and business
phone

–  Ability to edit the name fields at any time while keeping
the associated data

–  As the number of entries gets larger, we will want to be
able to search the address book

•  Support subsets and extensions
–  Produce a simpler version of the address book with

only names and phone #
–  Allow user to keep multiple address books of different

kinds (i.e., different fields)
–  Allow the user-defined fields

CIS 422/522 ©S. Faulk 14

Modularization using  
Information Hiding

CIS 422/522 ©S. Faulk 15

Decomposition Strategies

•  How do we develop this structure so that the
leaf modules make independent work
assignments?

•  Observed strategies did not result in
independent modules
–  Use-case driven OOD, heuristics
–  MVC Pattern

•  What should be done differently?
–  Why did these approaches fail?

6
CIS 422/522

CIS 422/522 ©S. Faulk 16

Use Case Driven OO Process

•  Address book design: in-class exercise
•  Requirements
•  Problem Analysis

–  Identify use cases from requirements
–  Identify domain classes operationalizing

use cases (apply heuristics)
•  OO Design (refinement)

–  Allocate responsibilities among classes
–  Identify object interactions supporting use

cases
–  Identify supporting classes (&

associations)
•  Detailed Design

–  Design class interfaces (class attributes
and services)

CIS 422/522 ©S. Faulk 17

Modular Structure

•  Architecture = components, relations, and interfaces
•  Components

–  Called modules
–  Leaf modules are work assignments
–  Non-leaf modules are the union of their submodules

•  Relations (connectors)
–  submodule-of => implements-secrets-of

•  Module is an aggregate of its submodules
–  Constrained to be acyclic tree (hierarchy)

•  Interfaces (externally visible component behavior)
–  Defined in terms of access procedures (services or method)
–  Services provide only access to module internals

CIS 422/522 ©S. Faulk 18

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules =
Work

assignments

7
CIS 422/522

CIS 422/522 ©S. Faulk 19

Decomposition Strategy

•  Decompose recursively
–  If a module holds decisions that are likely to change

independently, then decompose it into submodules
–  Decisions that are likely to change together are allocated to the

same submodule
–  Decisions that change independently should be allocated to

different submodules
•  Stopping criteria

–  Each module contains only things likely to change together
–  Each module is simple enough to be understood fully, small

enough that it makes sense to throw it away rather than re-do
•  Define the Interfaces

–  Anything that other modules should not depend on become
secrets of the module (e.g., implementation details)

–  If the module has an interface, only things not likely to change
can be part of the interface

CIS 422/522 ©S. Faulk 20

Effects of Changes

•  Consider what happens to
communication among
module developers

•  Suppose we have groups of
requirements R1 – R3:

–  R1 and R3 are related and
likely to change together

–  R2 is likely to change
independently

•  Suppose we put R1 and R2
in the same module and
assign to different teams

–  What happens when R1
changes?

–  R2?
•  Suppose R1 and R3 are put

in the same module?

R3
R2

R1

R2
R1 R3

Interface Interface

CIS 422/522 ©S. Faulk 21

Applied Information Hiding

•  The rule we just described is called the
information hiding principle

•  Design principle of limiting dependencies
between components by hiding information other
components should not depend on

•  An information hiding decomposition is one
following the design principles that:
–  System details that are likely to change independently

are encapsulated in different modules
–  The interface of a module reveals only those aspects

considered unlikely to change

8
CIS 422/522

CIS 422/522 ©S. Faulk 22

Design Principles

CIS 422/522 ©S. Faulk 23

Three Key Design Principles

•  Most solid first
•  Information hiding
•  Abstraction

CIS 422/522 ©S. Faulk 24

Principle: Most Solid First

•  View design as a sequence of decisions
–  Later decisions depend on earlier
–  Early decisions harder to change

•  Most solid first: in a sequence of decisions, those that
are least likely to change should be made first

•  Goal: reduce rework by limiting the impact of changes
•  Application: used to order a sequence of design

decisions
–  Generally applicable to design decisions
–  Module decomposition – ease of change
–  Developing families – create most commonality

9
CIS 422/522

CIS 422/522 ©S. Faulk 25

Information Hiding

•  Information hiding: Design principle of limiting
dependencies between components by hiding
information other components should not
depend on

•  An information hiding decomposition is one
following the design principles that (Parnas):
–  System details that are likely to change

independently are encapsulated in different
modules

–  The interface of a module reveals only those
aspects considered unlikely to change

CIS 422/522 ©S. Faulk 26

Abstraction

•  General: disassociating from specific
instances to represent what the instances
have in common
–  Abstraction defines a one-to-many relationship

E.g., one type, many possible implementations
•  Modular decomposition: Interface design

principle of providing only essential
information and suppressing unnecessary
detail

CIS 422/522 ©S. Faulk 27

Abstraction

•  Two primary uses
•  Reduce Complexity

–  Goal: manage complexity by reducing the amount of
information that must be considered at one time

–  Approach: Separate information important to the problem at
hand from that which is not

•  Abstraction suppresses or hides “irrelevant detail”
•  Examples: stacks, queues, abstract device

•  Model the problem domain
–  Goal: leverage domain knowledge to simplify understanding,

creating, checking designs
–  Approach: Provide components that make it easier to model

a class of problems
•  May be quite general (e.g., type real, type float)
•  May be very problem specific (e.g., class automobile, book object)

10
CIS 422/522

CIS 422/522 ©S. Faulk 28

Example: Simple Library Model

•  What are the abstractions?
•  What information is hidden?

CIS 422/522 ©S. Faulk 29

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules =
Work

assignments

Parent Modules

CIS 422/522 ©S. Faulk 30

Observations

•  Heuristics and patterns are guidelines
–  Do not guarantee qualities
–  Must understand how and why they work to apply

effectively
•  Principles are more direct – achieve qualities

by construction
•  Good design requires careful thinking

–  Which goals are we trying to achieve
–  How design decisions address those goals

11
CIS 422/522

CIS 422/522 ©S. Faulk 31

Questions?

